Polarization-maintaining Ytterbium-doped Fiber

Everfoton panda type polarization-maintaining ytterbium-doped fiber based on advanced PCVD and MCVD technologies, has excellent geometric and birefringent properties, which can effectively reduce the nonlinear effect in the optical system. As a gain fiber, it has high optical conversion efficiency and outstanding beam quality, which is widely used in ultrashort pulse precision processing, lidar and other fields.

Features

- Precise control of geometric parameters
- · Excellent birefringence
- · High laser conversion efficiency
- · Excellent beam quality

Applications

- · Ultrashort pulse fiber amplifier and fiber laser
- Lidar
- · Laser range finding
- · Continuous fiber amplifier and fiber laser

Specifications

Fiber Type	YDF_DC 25/250(PM)	YDF_DC 30/250(PM)
Part No.	YD1111-F	YD1111-E
Optical Properties		
Operating Wavelength (Yb³+)(nm)	1030 - 1115	1030 - 1115
Cladding Attenuation@I095nm (dB/km)	< 20	<20
Cladding Pump Absorption@915nm (dB/m)	1.6 ± 0.2	1.8 ± 0.2
Cladding Pump Absorption@975nm (dB/m)	4.8	5.3
Core NA	0.06 ± 0.01	0.06 ± 0.01
Inner Cladding NA	≥ 0.46	≥ 0.46
Geometrical Properties		
Core Diameter (µm)	25.0 ± 2.5	30 ± 2
Inner Cladding Diameter (µm)	250 ± 8	250 ± 8
Coating Diameter (µm)	395 ± 15	395 ± 15
Inner Cladding Shape (N/A)	Circular	Circular
Proof Test (kpsi)	100	100